skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grocott, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High‐latitude ionospheric convection is a useful diagnostic of solar wind‐magnetosphere interactions and nightside activity in the magnetotail. For decades, the high‐latitude convection pattern has been mapped using the Super Dual Auroral Radar Network (SuperDARN), a distribution of ground‐based radars which are capable of measuring line‐of‐sight (l‐o‐s) ionospheric flows. From the l‐o‐s measurements an estimate of the global convection can be obtained. As the SuperDARN coverage is not truly global, it is necessary to constrain the maps when the map fitting is performed. The lower latitude boundary of the convection, known as the Heppner‐Maynard boundary (HMB), provides one such constraint. In the standard SuperDARN fitting, the HMB location is determined directly from the data, but data gaps can make this challenging. In this study we evaluate if the HMB placement can be improved using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), in particular for active time periods when the HMB moves to latitudes below . We find that the boundary as defined by SuperDARN and AMPERE are not always co‐located. SuperDARN performs better when the AMPERE currents are very weak (e.g., during non‐active times) and AMPERE can provide a boundary when there is no SuperDARN scatter. Using three geomagnetic storm events, we show that there is agreement between the SuperDARN and AMPERE boundaries but the SuperDARN‐derived convection boundary mostly lies equatorward of the AMPERE‐derived boundary. We find that disagreements primarily arise due to geometrical factors and a time lag in expansions and contractions of the patterns. 
    more » « less
  2. Abstract Joule heating is a major energy sink in the solar wind‐magnetosphere‐ionosphere system and modeling it is key to understanding the impact of space weather on the neutral atmosphere. Ion drifts and neutral wind velocities are key parameters when modeling Joule heating, however there is limited validation of the modeled ion and neutral velocities at mid‐latitudes. We use the Blackstone Super Dual Auroral Radar Network radar and the Michigan North American Thermosphere Ionosphere Observing Network Fabry‐Perot interferometer to obtain the local nightside ion and neutral velocities at ∼40° geographic latitude during the nighttime of 16 July 2014. Despite being a geomagnetically quiet period, we observe significant sub‐auroral ion flows in excess of 200 ms−1. We calculate an enhancement to the local Joule heating rate due to these ion flows and find that the neutrals impart a significant increase or decrease to the total Joule heating rate of >75% depending on their direction. We compare our observations to outputs from the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM). At such a low geomagnetic activity however, TIEGCM was not able to model significant sub‐auroral ion flows and any resulting Joule heating enhancements equivalent to our observations. We found that the neutral winds were the primary contributor to the Joule heating rates modeled by TIEGCM rather than the ions as suggested by our observations. 
    more » « less
  3. Key Points We study dusk‐dawn asymmetries in 7 years of Super Dual Auroral Radar Network convection maps which are introduced by solar wind orientations, or data processing Asymmetries due to interplanetary magnetic field B y can occur in the strength and location of the convection cells, and the return flow width Asymmetries due to the background model are likely to occur in the locations of the convection cells 
    more » « less
  4. Key Points We identify changes in derived convection maps when PolarDARN and StormDARN are added, and show the impact of different processing Derived convection parameters are highly susceptible to processing variables and which radars are included We show how the number of backscatter echoes per map is critical to the integrity of the maps, and discuss how this impacts map quality 
    more » « less